Journal of Organometallic Chemistry, 132 (1977) 77–93 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ALTERNATIV-LIGANDEN

V *. DARSTELLUNG VON CHELATLIGANDEN DES TYPS Me-XGeMe-CH-X'Me-, (X, X' = N, P und/oder As)

J. GROBE * und J. HENDRIOCK

Eduard Zintl-Institut der Technischen Hochschule Darmstadt Hochschulstr. 4, 61 Darmstadt (B.R.D.)

(Eingegangen den 13. Oktober 1976)

Summary

Chelating ligands of the general type $Me_2XGeMe_2CH_2X'Me_2$ (X, X' = N, P, As) have been prepared by several routes. The new compounds were identified by analytical and spectroscopic (IR, NMR, MS) methods.

Zusammenfassung

Chelatliganden des allgemeinen Typs $Me_2XGeMe_2CH_2X'Me_2$ (X, X' = N, P, As) wurden auf verschiedenen Wegen synthetisiert. Die neuen Verbindungen wurden durch analytische und spektroskopische (IR, NMR, MS) Methoden identifiziert.

Einleitung

In früheren Arbeiten [1,2] wurde über die Synthese von "Alternativ-Liganden" des Typs Me₂XSiMe₂CH₂X'Me₂ (X, X' = N, P, As) berichtet. Die Ableitung von Informationen über die Ligandeneigenschaften von X und X' an einer Auswahl von Chrom- und Molybdänkomplexen M(CO)₄XSiCX' ergibt zwar gewisse Gesetzmässigkeiten in den spektroskopischen Daten [3], lässt aber den Anteil der verschiedenen Parameter ($d_{\pi}-d_{\pi}$ -Rückbindung, $p_{\pi}-d_{\pi}$ -Wechselwirkung, Bindungspartner von X bzw. X') an den beobachteten Effekten bisher nicht erkennen. Um die Zuverlässigkeit der Aussagen zu erhöhen, ist eine Erweiterung der experimentellen Basis vorgesehen. Wir haben daher die Reihe der Liganden XSiCX' durch die entsprechenden Verbindungen des Germaniums Me₂XGeMe₂CH₂X'Me₂ (X, X' = N, P, As) zu ergänzen versucht. Über die Synthese dieser "Alternativ-Liganden" wird in der vorliegenden Arbeit berichtet.

* IV. Mitteilung siehe Ref. 1.

Darstellung der Liganden

Zur Darstellung der Liganden bietet sich als Ausgangsverbindung das Dimethylchlormethyl-chlorgerman, Me₂Ge(Cl)CH₂Cl, an, das in einer dreistufigen Synthese aus GeCl₄ zugänglich ist (Gl. 1-3). GeCl₄ wird in der ersten Stufe durch Methylierung in einer Salzschmelze [4] zu GeMe, umgesetzt, das im zweiten Schritt durch Substituentenaustausch mit SnCl₄ [5] in Me₃GeCl überführt wird. Die Gasphasen-Photochlorierung von MetGeCl [6] liefert schliesslich die bifunktionelle Ausgangsverbindung ClGeMe₂CH₂Cl in guter Ausbeute.

$$GeCl_4 + 4Na[AlCl_3Me] \rightarrow GeMe_4 + 4Na[AlCl_4]$$
(1)

$$2\text{GeMe}_{4} + \text{SnCl}_{4} \xrightarrow{\text{AlCl}_{3}} 2\text{Me}_{3}\text{GeCl} + \text{Me}_{2}\text{SnCl}_{2}$$

$$Me_{2}\text{GeCl} + \text{Cl}_{2} \xrightarrow{h\nu} \text{ClGeMe}_{2}\text{CH}_{2}\text{Cl} + \text{HCl}$$
(2)
(3)

 $Me_3GeCl + Cl_2 \xrightarrow{np} ClGeMe_2CH_2Cl + HCl$

Die unterschiedliche Reaktivität der beiden funktionellen Gruppen (Ge-Cl und C-Cl) ist Voraussetzung für die Synthese der gemischt substituierten Derivate XGeCX'. Verglichen mit der Darstellung der analogen Siliciumverbindungen, waren vor allem zwei Probleme zu erwarten:

(a) Die geringere Flüchtigkeit der Ge-Verbindungen erschwert die Isolierung und führt zu höherer thermischer Belastung bei der Rektifikation.

(b) Die geringere Stabilität der Ge-X-Bindungen führt generell zu geringerer thermischer Belastbarkeit.

Aus diesen Gründen waren für die Darstellung möglichst solche Methoden auszuwählen oder zu erarbeiten, die zu hohen Ausbeuten führen und schonende Trennverfahren zulassen. Die eingeschlagenen Synthesewege basieren auf vier Grundreaktionen, die in vielen Fäller kombiniert wurden:

Fig. 1. Reaktionsschema zur Synthese der Chelatliganden Me₂XGeMe₂CH₂X'Me₂ (X, X' = N, P, As).

- 1. Alkalisalz-Eliminierung
- 2. Substituentenaustauschprozesse
- 3. Aminolyse
- 4. Säure–Base-Reaktionen

Fig. 1 gibt die Reaktionswege schematisch wieder.

1. Liganden des Typs Me₂XGeMe₂CH₂XMe₂ (X = N, P, As)

Diese Liganden sind in guten Ausbeuten nach dem durch Gl. 4 wiedergegebenen Alkalisalz-Verfahren zugänglich.

$$ClGeMe_2CH_2Cl + LiXMe_2 \rightarrow Me_2XGeMe_2CH_2Cl + LiCl$$
(4a)

$$Me_2XGeMe_2CH_2Cl + LiXMe_2 \rightarrow Me_2XGeMe_2CH_2XMe_2 + LiCl$$
 (4b)

Die unterschiedliche Reaktivität der beiden funktionellen Gruppen erlaubt bei tiefen Temperaturen und entsprechender Stöchiometrie eine stufenweise Substitution. Dabei wird zunächst das reaktivere, an Ge gebundene Chlor ersetzt. Bei höheren Temperaturen und Verwendung von überschüssigem LiXMe₂ entsteht das Disubstitutionsprodukt.

Darstellung von $Me_2XGeMe_2CH_2Cl$ (X = N, P, As)

Die $Me_2XGeMe_2CH_2Cl$ -Verbindungen werden in Anlehnung an eine Methode von Abel [7] und Anderson [8] zur Darstellung von $Me_2AsGeMe_3$ durch Umsetzung von ClGeMe_2CH_2Cl mit äquimolaren Mengen von "in situ" präpariertem LiXMe_2 in Benzol, Pentan oder Äther bei -40 bis -50°C gewonnen (Gl. 4a). Die gewünschten Verbindungen bilden sich in praktisch quantitativer Ausbeute, erweisen sich jedoch beim Übergang vom Arsino- zum Aminoderivat als zunehmend instabil. Grund für diese Instabilität ist wie bei den Si-analogen Verbindungen [2] die Bildung von Oniumsalzen nach Gl. 5.

$$n \operatorname{Me}_{2} \operatorname{XGeMe}_{2} \operatorname{CH}_{2} \operatorname{Cl} \rightarrow [\operatorname{Me}_{2} \operatorname{X} \operatorname{GeMe}_{2} \operatorname{CH}_{2} -]_{n}^{n+} n \operatorname{Cl}^{-}$$
(5)

Die Oniumsalzbildung nimmt mit abnehmender Basizität von X deutlich ab; während Me₂NGeMe₂CH₂Cl bereits in Lösung unterhalb 0°C und Me₂PGeMe₂CH₂Cl bei -20°C in reiner Form unter Salzbildung reagieren, lässt sich Me₂ AsGeMe₂CH₂Cl unter vermindertem Druck bei 32°C destillieren und bei -10°C über längere Zeit unverändert aufbewahren. Die Unbeständigkeit erschwert die Handhabung dieser Verbindungen erheblich. Sie sind deshalb für die Synthese der gemischt substituierten Liganden XGeCX' nur bedingt geeignet.

Die thermische Behandlung der Halbliganden $Me_2XGeMe_2CH_2Cl$ (X = P, As) führt über das Oniumsalz (G. 5) unter Ge—X-Spaltung nach Gl. 6 zu den isomeren Produkten ClGeMe_2CH_2XMe_2.

$$[Me_2 XGeMe_2 CH_2 -]_n^n nCi^{-\Delta} n ClGeMe_2 CH_2 XMe_2$$
(6)

Dabei bildet sich die Arsenverbindung bei ca. 100°C innerhalb von 24 Stunden, bei 20°C innerhalb eines halben Jahres quantitativ, während sich das Phosphoniumsalz selbst bei 160°C nur in geringem Umfang umlagert. Die rasche Salzbildung und im Fall der Phosphorverbindung die unvollständig verlaufende thermische Ge-P-Spaltung stehen im Widerspruch zu der von Brooks et al. [9] beschriebenen Umsetzung von $(C_2H_5)_3$ GeP $(C_6H_5)_2$ mit CH₃J, bei der die Phosphoniumsalzstufe nicht beobachtet, sondern eine glatte Ge-P-Bindungsspaltung nach Gl. 7 gefunden wurde.

$$(C_2H_5)_3GeP(C_6H_5)_2 + 2MeJ \rightarrow (C_2H_5)_3GeJ + [Ph_2PMe_2]^+J^-$$
 (7)

Die hohe Umwandlungsgeschwindigkeit der Verbindungen $Me_2XGeMe_2CH_2Cl$ (X = N, P) liess lediglich eine NMR-spectroskopische Charakterisierung im Gemisch mit der Ausgangsverbindung ClGeMe₂CH₂Cl zu. Das bei Normalbedingungen noch gut handhabbare Arsinderivat konnte als Reinsubstanz spektrometrisch (NMR, MS, IR) identifiziert werden.

Darstellung von $Me_2XGeMe_2CH_2XMe_2$ (X = N, P, As)

Die Synthese dieser Verbindungen erfolgt durch Umsetzung von ClGeMe₂CH₂Cl mit einem 50-80% igen Überschuss von LiXMe₂ in Benzol oder Hexan bei 60-80°C. Die Liganden werden nach Abtrennung des festen LiCl durch fraktionierte Destillation in reiner Form erhalten.

2. Liganden des Typs Me₂XGeMe₂CH₂X'Me₂ (X \neq X'; X, X' = N, P, As)

Die Darstellung der gemischt substituierten Liganden XGeCX' kann prinzipiell über die Halbliganden XGeCCl oder ClGeCX' erfolgen. Wie weiter oben berichtet, sind die Verbindungen XGeCCl so instabil, dass eine Substitution des C-gebundenen Chloratoms durch X'Me₂-Gruppen stets von der Bildung erheblicher Mengen an Nebenprodukten begleitet ist.

Die isomeren Halbliganden ClGeMe₂CH₂X'Me₂ sind mit Ausnahme der Arsenverbindung nicht in reiner Form zugänglich. Die verhältnismässig einfache Darstellung der symmetrischen Disubstitutionprodukte Me₂X'GeMe₂CH₂X'Me₂ und die bekannte unterschiedliche Reaktivität von Ge-X'- bzw. C-X'-Bindungen lassen jedoch die Synthese der Zwischenstufen ClGeMe₂CH₂X'Me₂ durch gezielte Spaltung der Ge-X'-Bindung zu. Die Stabilität dieser Derivate und die Reaktivität der Ge-Cl-Bindung ermöglichen glatte Umsetzungen mit LiXMe₂.

Darstellung von $ClGeMe_2CH_2X'Me_2$ (X' = N, P, As)

Die Darstellung des Halbliganden ClGeMe $_2$ CH $_2$ NMe $_2$ gelingt durch Umsetzung von Me $_2$ NGeMe $_2$ CH $_2$ NMe $_2$ mit PCl $_3$ nach Gl. 8:

$$Me_2NGeMe_2CH_2NMe_2 + PCl_3 \rightarrow ClGeMe_2CH_2NMe_2 + Cl_2PNMe_2$$
 (8)

Die Trennung der Reaktionsprodukte durch fraktionierte Destillation unter vermindertem Druck gelingt jedoch nicht; die gaschromatographische Trennung liefert das gewünschte Produkt nur in geringer Ausbeute.

Wesentlich erfolgreicher verläuft die Spaltung der Ge-N-Bindung mit einem Überschuss von Me₃SiCl. Nach Gl. 9 entsteht der Halbligand ClGeMe₂CH₂NMe₂ quantitativ und lässt sich leicht von überschüssigem Me₃SiCl und Me₃SiNMe₂ abtrennen.

$$Me_2NGeMe_2CH_2NMe_2 + Me_3SiCl \rightarrow ClGeMe_2CH_2NMe_2 + Me_3SiNMe_2$$
 (9)

Für die Synthese der Zwischenstufen ClGeMe₂CH₂PMe₂ bzw. ClGeMe₂CH₂AsMe₂ wurden die von Schumann [10] bzw. Abel [11] beschriebenen Spaltungsreaktionen von Sn—As- bzw. Si—As-Bindungen mit Ph_2PCl bzw. Me_2AsCl entsprechend den speziellen Zielen modifiziert. Der Austausch der an Germanium gebundenen Me_2P - bzw. Me_2As -Gruppe gegen ein Chloratom gelingt mit Me_2XCl (X = P, As) nach Gl. 10 bereits bei Raumtemperatur quantitativ.

 $Me_{2}X'GeMe_{2}CH_{2}X'Me_{2} + Me_{2}X'Cl \rightarrow ClGeMe_{2}CH_{2}X'Me_{2} + Me_{2}X'X'Me_{2}$ (10)

Die Halbliganden lassen sich durch fraktionierte Destillation bei vermindertem Druck als farblose, luft- und feuchtigkeitsempfindliche Substanzen isolieren.

Darstellung von $Me_2XGeMe_2CH_2X'Me_2$ ($X \neq X'$)

Die Synthese der gemischt substituierten Liganden XGeCX' ist, ausgehend von den Halbliganden ClGeCX', im Prinzip durch Umsetzung mit den Lithiumsalzen LiXMe₂ nach Gl. 11 möglich:

$$ClGeMe_2CH_2X'Me_2 + LiXMe_2 \rightarrow Me_2XGeMe_2CH_2X'Me_2 + LiCl$$
(11)

Allerdings rechtfertigt die aufwendige und in der Regel verlustreiche Aufarbeitung der Reaktionsgemische die Suche nach einem einfacheren Darstellungsverfahren.

In der Literatur sind von verschiedenen Arbeitsgruppen [8,11-14] Austauschreaktionen zwischen Silylphosphinen bzw. -arsinen und Chlorgermanen beschrieben (Gl. 12). Die Übertragung dieses Reaktionsprinzips erwies sich für die Dar-

$$H_{3}SiEH_{2} + H_{3}GeCl \rightleftharpoons H_{3}SiCl + H_{3}GeEH_{2}$$

$$(12)$$

$$(E = P, As) [12]$$

stellung der Liganden XGeCX' als sehr erfolgreich. Um eine vollständige Umsetzung der Halbliganden zu erreichen, ist ein Überschuss der Reaktionspartner Me₃SiXMe₂ empfehlenswert. Der Überschuss der Si—X-Verbindung und das nach Gl. 13 gebildete Me₃SiCl lassen sich von dem gewünschten Produkt im Vakuum leicht trennen.

$$ClGeMe_2CH_2X'Me_2 + Me_3SiXMe_2 \rightarrow Me_2XGeMe_2CH_2X'Me_2 + Me_3SiCl$$
(13)

Dieses Austauschprinzip lässt sich auch für die Synthese der Halbliganden $Me_2XGeMe_2CH_2Cl$ ausnutzen. Da bei erhöhten Temperaturen Oniumsalzbildung eintritt, ist die Umsetzung bei möglichst tiefer Temperatur durchzuführen. Die Überprüfung des Verfahrens für den Fall X = As ergab, dass zwischen -60 und -40°C trotz eines hohen Überschusses an $Me_3SiAsMe_2$ die Ausgangsverbindung ClGe Me_2CH_2Cl nicht vollständig zu $Me_2AsGeMe_2CH_2Cl$ umgesetzt wird.

Darstellung von $Me_2NGeMe_2CH_2X'Me_2$ (X' = P, As)

Für die Knüpfung von Ge-N-Bindungen kommt neben der Reaktion von Ge-Cl-Gruppen mit LiNMe₂ auch die Aminolyse mit Dimethylamin in Frage. Bei der Umsetzung von ClGeMe₂CH₂Cl bzw. ClGeMe₂CH₂X'Me₂ mit HNMe₂ entstehen nach Gl. 14 die Aminoderivate in mässigen Ausbeuten.

 $ClGeMe_{2}CH_{2}Cl + 2HNMe_{2} \rightarrow Me_{2}NGeMe_{2}CH_{2}Cl + [Me_{2}NH_{2}]Cl$ (14a)

 $ClGeMe_{2}CH_{2}X'Me_{2} + 2HNMe_{2} \rightarrow Me_{2}NGeMe_{2}CH_{2}X'Me_{2} + [Me_{2}NH_{2}]Cl \quad (14b)$

Die exotherm verlaufende Reaktion erfolgt in Pentan oder Hexan schon bei

Temperaturen unter 0°C. Allerdings entstehen ausser den gewünschten Verbindungen Nebenprodukte, die sich destillativ nicht vollständig abtrennen lassen.

Darstellung von $Me_2XGeMe_2CH_2NMe_2$ (X = P, As)

Für die Synthese der Liganden XGeCN lässt sich die Zunahme der Acidität in der Reihe $HNMe_2 < HPMe_2 < HAsMe_2$ ausnutzen. Ausgehend von der Verbindung $Me_2NGeMe_2CH_2NMe_2$ werden mit $HXMe_2$ (X = P, As) in Benzol oder Hexan bei 0°C die Liganden $Me_2XGeMe_2CH_2NMe_2$ zugänglich (Gl. 15).

(15)

 $Me_2NGeMe_2CH_2NMe_2 + HXMe_2 \rightarrow Me_2XGeMe_2CH_2NMe_2 + HNMe_2$

Dieses Verfahren wurde bei einfachen Germylaminen schon von Anderson [8] und Schumann [15] verwendet. Est ist der Austauschreaktion nach Gl. 16 zwischen $Me_2NGeMe_2CH_2NMe_2$ und Me_3SiPMe_2 schon deshalb überlegen, weil diese

.

Temperaturen von etwa 100°C erfordert. Allerdings läuft auch diese Umsetzung bei Verwendung eines 50% igen Überschusses Me₃SiPMe₂ quantitativ ab. Treibende Kraft dieser Reaktion dürfte die bessere $d_{\pi}-p_{\pi}$ -Überlappung im Si-N-, verglichen mit dem Ge-N-System, sein.

 $Me_2NGeMe_2CH_2NMe_2 + Me_3SiPMe_2 \rightarrow Me_2PGeMe_2CH_2NMe_2 + Me_3SiNMe_2$ (16)

Spektroskopische Untersuchungen

(1) Infrarotspektren

Die Infrarotspektren der neuen Verbindungen wurden im Bereich von 4000 bis 400 cm⁻¹ registriert. Die Fig. 2 bis 4 geben die Spektren wieder.

TABELLE 1

CHEMISCHE VERSCHIEBUNGEN (7,5) UND KOPPLUNGSKONSTANTEN [J(PH)] DER CHELAT-LIGANDEN UND IHRER VORSTUFEN IM ¹H^g UND ³¹P ^b NMP-spektritim

CoeMe	2CH2X	r(H) (ppm				J(PH)	(III)					δ(P) (ppm)		
	x'	GeMe ₂	GeXMe ₂	CX'Me ₂	GeCH ₂ X'	GeMe	2	GeXMe ₂	CX'Me2	GeCI	1 ₂ X'	GeXMe ₂	CX'Me	
i an La ger	-					3,1	4,1	2,1	1 ¹	2J	1 2			
, , ,	5	9.18	ł	1	6.67									
Ae2N	ប	9.76	7.68	I	7.23									
1	Me ₂ N	0.48	1	7.98	7.73							-		
le2N	NMe ₂	9.75	7.48	7.86	7.91									
Ac ₂ P	NMe ₂	9.73 d	8.97 d	7.85	7.83 d	3.1	1	3.8	I	I	3.0	115.0	1	- 1.
Ac2A5	NMe ₂	9.70	9.01	7.86	7.81								-	
Ac2P	ธ	9.67 d	8.93 d	1	7.05 d	3.0	ł	4.0	ł	I	1.6	Phosphoniu	msalz	-
1	PMe ₂	9.45 d	1	9.12 d	9,06	1	0.4	1	3.1	I	ŀ		50.0	
Ac2P	PMc ₂	9.72 dd	8.98 d	9.07 d	9.28 dd	3.0	0.3	3.7	3.0	0.8	2.5	114.9	54.0	
Ie2N	PMe ₂	9.74 d	7.50	9.08 d	9.31 d	I	0,4	I	2.9	0.7	1		55,7	20) 1
Je2A8	PMe ₂	9.67	9,04	9.08 d	9.24 d	1	1	1	3.1	0.9	t	1	54.4	
Ae2As	5	9.76	9.14	1	7.18									
I	AsMe ₂	9.60	1	9.19	9,14									
Ae2As	AsMe ₂	9.68	9.04	9.12	9.23									• • •
Je ₂ N	A8Mc ₂	9.76	7.49	9.12	9.30									
Ac2P	AsMe ₂	9.73 d	8,98 d	9.11	9.27 d	3.1	ł	3.7	I	I	2.6	115.5	I	

(2) ¹H- und ³¹P-Kernresonanzspektren

Die Daten der Kernresonanzuntersuchung sind in Tab. 1 zusammengestellt. Sie bestätigen in allen Einzelheiten die in den Verbindungen enthaltenen Gruppen und ihre Verknüpfung. Typische Spektren sind in Fig. 5 dargestellt.

(3) Massenspektren

Die Massenspektren wurden vornehmlich zur Charakterisierung der neuen Verbindungen aufgenommen. In den meisten Fällen ist den Spektren die Molmasse zu entnehmen. Analoge Verbindungen zeigen ähnliche Fragmentierungsmuster, während sich die Isomerenpaare XGeCX' und X'GeCX charakteristisch unterscheiden. Tab. 2 enthält die wichtigsten Bruchstückionen, ihre relative Häufigkeit und eine versuchsweise Zuordnung.

	RELATIVE HÄUFIGKEIT	^a EINIGER IONEN IN	DEN MASSENSPEKTREN	DER LIGANDEN
--	---------------------	-------------------------------	--------------------	--------------

XGeMe	2CH2X	Masser	peak (M)	M - C	н3	GeMe ₂ CH ₂ X' ⁺		XGeMe2 ⁺		Me ₃ Ge ⁺	
x	X'	m/e	%	m/e	%	m/e	50	m/e	%	m/e	%
Cl	NMe ₂	197	6	-	_	162	15	139	28	119	18
Me ₂ N	NMe ₂	206	1				—	148	2	119	1
Me ₂ P	NMe ₂	223	13	208	2	162	19	165	4	119	17
Me ₂ As	NMe ₂	267	3	252	1	162	64	209	3	119	47
CI	PMe ₂	214	5	199	2	179	2	139	6	119	5
Me ₂ P	PMe ₂	240	2	225	13	179	19	165	11	119	52
Me ₂ N	PMe ₂	223	4	208	3	179	33	148	11	119	67
Me ₂ As	PMe ₂	—	_	269	34	179	20	209	4	119	67
C1	AsMe ₂	258	29	243	83	223	7	139	100	119	77
Me ₂ As	AsMe ₂	328	1	313	13	223	18	209	6	119	100
Me_2N	AsMe ₂			25Ż	2	223	1			119	8
Me ₂ P	$AsMe_2$	- ,		269	54	223	6	165	18	119	106

⁴ Die Prozentangaben beziehen sich auf den stärksten Massenpeak mit 100% und gelten für das Isotop ⁷⁴Ge.

Beschreibung der Versuche

(1) Allgemeine Untersuchungsmethoden

Wegen der Hydrolyse- und Sauerstoffempfindlichkeit praktisch aller in dieser Arbeit verwendeten Substanzen und der Flüchtigkeit der $HXMe_2$ -Verbindungen (X = N, P, As) wurden sämtliche Umsetzungen in trockenen und entgasten Lösungsmitteln unter Vakuum oder trockenem Stickstoff durchgeführt. Die Reaktionsgefässe wurden vor jeder Operation unter Vakuum ausgeheizt. Alle Reinigungs-, Dosier- und Umfüllvorgänge erfolgten mit Hilfe einer Stock'schen Vakuumapparatur. Quantitative Einzelheiten über die Umsetzungen und einige Eigenschaften der neuen Verbindungen sind in Tab. 3 wiedergegeben.

Die IR-Spektren wurden an den reinen Verbindungen bei kapillarer Schichtdicke mit dem Modell 325 der Fa. Perkin-Elmer, die NMR-Spektren mit einem Bruker-Modell WH 90, die Massenspektren mit dem Modell CH 4 B der Fa. Varian MAT Bremen, gekoppelt mit dem Spektrosystem SS 100, registriert. Analysendaten und Molekulargewichte sind in Tab. 4 zusammengestellt.

(2) Ausgangsverbindungen

Dimethylamin, Trimethylchlorsilan, n-Butyllithium, Natriumcacodylat und Germanium sind im Handel erhältlich.

Dimethylphosphin wurde durch Reduktion von $Me_2P(S)-P(S)Me_2$ mit LiAlH₄ in Dibutyläther [16-18], Dimethylarsin durch Reduktion von Natriumcacodylat mit Zink/Salzsäure [19], LiXMe₂ (X = P, As) durch Umsetzung von HXMe₂ mit Butyllithium [20], Me₃SiXMe₂ durch Substitution des Chloratoms im Me₃SiCl durch Reaktion mit LiXMe₂ und ClGeMe₂CH₂Cl durch Photochlorierung [6] von Me₃GeCl erhalten.

(3) Arbeitsvorschriften

Dimethyl-chlormethyl-dimethylaminogerman, $Me_2NGeMe_2CH_2Cl$; Aminolyse von $ClGeMe_2CH_2Cl$ mit $HNMe_2$. In eine speziell für diese Umsetzung angefertigte

TABELLE 2

RELATIVE HÄUFIGKEIT^a EINIGER IONEN IN DEN MASSENSPEKTREN DER LIGANDEN

XGeMe	CH_2X'	Masser	peak (M)	$M - CH_3$		GeMe	CH ₂ X' ⁺	$XGeMe_2^+$		Me ₃ Ge ⁺	
x	X'	m/e	 %	m/e	ç.	m/e	%	m/e	50	m/e	 %
CI	NMe ₂	197	6	_		1-62	15	139	28	119	18
Me_2N	NMe ₂	206	1		<u> </u>			148	2	119	1
Me ₂ P	NMe ₂	223	13	208	2	162	19	165	4	119	17
Me ₂ As	NMe ₂	267	3	252	1	162	64	209	3	119	47
CI	PMe ₂	214	5	199	2	179	2	139	6	119	5
Me_2P	PM≥2	240	2	225	13	179	19	165	11	119	52
Me ₂ N	PMe ₂	223	4	208	3	179	33	148	11	119	67
Me ₂ As	PMe ₂		_	269	34	179	20	209	4	119	67
Cl	A.sMe ₂	258	29	243	83	223	7	139	100	119	77
Me ₂ As	A.sMe ₂	328	1	313	13	223	18	209	6	119	100
Me_2N	A_sMe_2		_	252	2	223	1		_	119	8
Me ₂ P	AsMe ₂	-	.—	269	54	223	6	165	18	119	100

^a Die Prozentangaben beziehen sich auf den stärksten Massenpeak mit 100% und gelten für das Isotop ⁷⁴Ge.

Beschreibung der Versuche

(1) Allgemeine Untersuchungsmethoden

Wegen der Hydrolyse- und Sauerstoffempfindlichkeit praktisch aller in dieser Arbeit verwendeten Substanzen und der Flüchtigkeit der $HXMe_2$ -Verbindungen (X = N, P, As) wurden sämtliche Umsetzungen in trockenen und entgasten Lösungsmitteln unter Vakuum oder trockenem Stickstoff durchgeführt. Die Reaktionsgefässe wurden vor jeder Operation unter Vakuum ausgeheizt. Alle Reinigungs-, Dosier- und Umfüllvorgänge erfolgten mit Hilfe einer Stock'schen Vakuumapparatur. Quantitative Einzelheiten über die Umsetzungen und einige Eigenschaften der neuen Verbindungen sind in Tab. 3 wiedergegeben.

Die IR-Spektren wurden an den reinen Verbindungen bei kapillarer Schichtdicke mit dem Modell 325 der Fa. Perkin-Elmer, die NMR-Spektren mit einem Bruker-Modell WH 90, die Massenspektren mit dem Modell CH 4 B der Fa. Varian MAT Bremen, gekoppelt mit dem Spektrosystem SS 100, registriert. Analysendaten und Molekulargewichte sind in Tab. 4 zusammengestellt.

(2) Ausgangsverbindungen

Dimethylamin, Trimethylchlorsilan, n-Butyllithium, Natriumcacodylat und Germanium sind im Handel erhältlich.

Dimethylphosphin wurde durch Reduktion von $Me_2P(S)-P(S)Me_2$ mit LiAlH₄ in Dibutyläther [16–18], Dimethylarsin durch Reduktion von Natriumcacodylat mit Zink/Salzsäure [19], LiXMe₂ (X = P, As) durch Umsetzung von HXMe₂ mit Butyllithium [20], Me_3SiXMe_2 durch Substitution des Chloratoms im Me_3SiCl durch Reaktion mit LiXMe₂ und ClGeMe₂CH₂Cl durch Photochlorierung [6] von Me_3GeCl erhalten.

(3) Arbeitsvorschriften

Dimethyl-chlormethyl-dimethylaminogerman, $Me_2NGeMe_2CH_2Cl$; Aminolyse von $ClGeMe_2CH_2Cl$ mit $HNMe_2$. In eine speziell für diese Umsetzung angefertigte

TABELLE 4

XGeMe ₂ CH ₂	X'	Analysen gef. (ber. (%)							
x	x	C	Н	N					
Me ₂ N	 Cl	(30.60)	- (7.10)	- (7.10)					
CI	NMe ₂	31.00 (30.60)	7.47 (7.10)	7.15 (7.10)					
Me ₂ N	NMe ₂	41.13 (41.05)	9.75 (9.77)	13.47 (13.68)					
Me ₂ P	NMe ₂	37.85 (37.90)	9.17 (9.02)	6.21 (6.31)					
Me ₂ As	NMe ₂	31.90 (31.63)	7.45 (7.53)	5.36 (5.27)					
Me ₂ P	Ci	- (28.17)	— (6.57)	<u> </u>					
Cl ·	PMe ₂	30.23 (28.17)	7.16 (6.57)						
Me ₂ P	PMe ₂	35.35 (35.20)	8.56 (8.38)						
Me ₂ N	PMe ₂	38.10 (37.90)	9.26 (9.02)	6.02 (6.32)					
Me ₂ As	PMe ₂	30.02 (29.73)	7.49 (7.08)						
Me ₂ As	CI	23.56 (23.35)	5.57 (5.45)						
CI	AsMe ₂	23.63 (23.35)	5.44 (5.45)	_					
Me ₂ As	AsMe ₂	25.66 (25.73)	6.20 (6.12)						
Me ₂ N	AsMe ₂	32.16 (31.64)	7.62 (7.53)	5.20 (5.27)					
Me ₂ P	AsMe ₂	29.91 (29.73)	7.06 (7.08)	_					

ANALYSENDATEN DER NEUEN VERBINDUNGEN

Glasapparatur, bestehend aus einem Reaktionsgefäss mit seitlich angesetzter Fritte und damit verschmolzener Ampulle, werden nacheinander 10 g (53.3 mmol) ClGeMe₂CH₂Cl, 50 ml Pentan und 7.4 g (164 mmol) HNMe₂ einkondensiert. Das Gefäss wird unter Vakuum abgeschmolzen und langsam von -196° C (fl. N₂) auf 0°C gebracht. Dabei läuft die Aminolyse der Ge-Cl-Bindung unter beträchtlicher Wärmeentwicklung ab. Die Trennung von Ammoniumsalz und Lösung erfolgt durch Filtration über die seitlich angesetzte Fritte. Der Niederschlag wird mehrfach mit zurückkondensiertem Pentan gewaschen. Das Filtrat wird eingefroren und durch Abschmelzen vom Reaktionsgefäss getrennt. Eine Reinigung der Flüssigkeit ist nicht möglich, da das Dimethyl-chlormethyl-dimethylaminogerman bereits in Lösung ein Ammoniumsalz bildet. Die Bildung des Me₂NGeMe₂CH₂Cl lässt sich PMR-spektrometrisch nachweisen.

Dimethyl-chlormethyl-dimethylphosphinogerman, $Me_2FGeMe_2CH_2Cl.$ 5.6 g (30 mmol) ClGeMe_2CH_2Cl werden in 50 ml Pentan in einem 100 ml-Zweihalskolben mit Rührer und Rückflusskühler bei einer Reaktionstemperatur von -30 bis -50°C mit 2.0 g (30 mmol) LiPMe_2, das aus einem speziellen Dosiergefäss portionsweise als Feststoff zugegeben wird, umgesetzt. Die dabei erhaltene Suspension wird bei Raumtemperatur einige Stunden gerührt. Der LiCl-Niederschlag wird in einer Schutzgasfritte gesammelt und aus dem Filtrat das Pentan aus einem Eisbad abkondensiert. Den Rückstand bildet das reine Me_2PGeMe_2CH_2Cl und eine geringe Menge an Ausgangsverbindung. Bei -20°C setzt sich das Reaktionsprodukt innerhalb weniger Studen zu einem Phosphoniumsalz um.

Dimethyl-chlormethyl-dimethylarsinogerman, $Me_2AsGeMe_2CH_2Cl$. (a) In einem 250 ml-Dreihalskolben mit Rührer und Rückflusskühler werden in 100 ml Äther 6.2 g (33 mmol) ClGeMe₂CH₂Cl bei -40 bis -50°C mit 3.7 g (33 mmol) frisch bereitetem LiAsMe₂ in Äther, das portionsweise als Suspension zugegeben wird, umgesetzt. Die Reaktionsmischung wird anschliessend einige Stunden bei Raumtemperatur gerührt. Das LiCl wird über eine Schutzgasfritte von der Lösung getrennt und das Filtrat einer fraktionierten Destillation unterworfen. Bei 32°C im Ölpumpenvakuum werden 3.0 g (35.4% d. Th.) Me₂AsGeMe₂CH₂Cl erhalten.

(b) 1.4 g (7.45 mmol) ClGeMe₂CH₂Cl, 1.6 g (9.0 mmol) Me₃SiAsMe₂ und 10 ml Pentan werden nacheinander in eine Glasampulle einkondensiert und unter Vakuum abgeschmolzen. Bei -78°C (Methanol/Trockeneis) erfolgt unter Wärmeentwicklung eine Substituenten-Austausch-Reaktion. Das Lösungsmittel, das überschüssige Me₃SiAsMe₂ und das gebildete Me₃SiCl werden aus einem Eisbad abkondensiert. Zurück bleiben neben einer geringen Menge an unumgesetztem ClGeMe₂CH₂Cl 1.8 g (94% d. Th.) Me₂AsGeMe₂CH₂Cl.

Dimethyl-dimethylaminomethyl-dimethylaminogerman, $Me_2NGeMe_2CH_2NMe_2$. In einem 250 ml-Dreihalskolben mit Rührer, Rückflusskühler und Tropftrichter werden zu 103 ml einer 1.65 molaren Lithiumbutyllösung in n-Hexan unter-Eiskühlung 11.05 g (245 mmol) HNMe₂ zugetropft. Es bildet sich sofort das LiNMe₂ als farbloser Niederschlag. Diese Suspension wird tropfenweise mit 11.5 g (61.3 mmol) ClGeMe₂CH₂Cl versetzt und 16 Stunden unter Rückfluss erhitzt. Das LiCl wird in einer Schutzgasfritte gesammelt und mehrmals mit zurückkondensiertem Lösungsmittel gewaschen. Das Filtrat wird einer fraktionierten Destillation unterworfen. Bei 94.5°C/72 Torr werden 10.3 g (82.1% d. Th.) Me₂NGeMe₂CH₂NMe₂ erhalten.

Dimethyl-dimethylphosphinomethyl-dimethylphosphinogerman, $Me_2PGeMe_2CH_2PMe_2$. 15 g (80 mmol) ClGeMe_2CH_2Cl werden in 150 ml Hexan in einem 250 ml-Dreihalskolben mit Rührer und Rückflüsskühler bei Temperaturen von -40 bis -50°C mit 20 g (226 mmol) LiPMe₂, das portionsweise zugegeben wird, umgesetzt. Zur Vervollständigung der Reaktion wird die Suspension anschliessend 12 Stunden auf 60-65°C erhitzt. Der Feststoff wird über eine Schutzgasfritte von der Lösung getrennt und mehrfach mit zurückkondensiertem Hexan gewaschen. Zur Reinigung wird das Filtrat fraktioniert destilliert. Bei 25-28°C/10⁻¹ Torr werden 11 g (57.6% d. Th.) reines Me₂PGeMe₂CH₂PMe₂ erhalten.

Dimethyl-dimethylarsinomethyl-dimethylarsinogerman, Me₂AsGeMe₂CH₂AsMe₂. 8.4 g (44.8 mmol) ClGeMe₂CH₂Cl und 12.4 g (111 mmol) frisch bereitetes LiAsMe₂ in Benzol ergeben nach vorstehender Vorschrift 10.5 g (71.5% d. Th.) Me₂AsGeMe₂CH₂AsMe₂.

Dimethyl-dimethylaminomethyl-chlorgerman, $ClGeMe_2CH_2NMe_2$. 5.45 g (50 mmol) Me₃SiCl werden in 50 ml Benzol in einem 100 ml-Zweihalskolben mit Rührer, Tropftrichter und Rückflusskühler tropfenweise mit 8.5 g (41.6 mmol) Me₂NGeMe₂CH₂NMe₂ bei Raumtemperatur umgesetzt. Die Lösung wird anschliessend einige Stunden gerührt. Die kondensierbaren Bestandteile werden aus einem Eisbad abkondensiert. Zurück bleiben 7.7 g (94% d. Th.) des reinen ClGeMe₂CH₂NMe₂.

Dimethyl-dimethylphosphinomethyl-chlorgerman, $ClGeMe_2CH_2PMe_2$. 9.0 g (37.7 mmol) Me_2PGeMe_2CH_2PMe_2 werden in 50 ml Benzol in einem 100 ml-Zweihalskolben mit Rührer, Tropftrichter und Rückflusskühler tropfenweise mit der genau äquimolaren Menge (3.6 g; 37.7 mmol) Me_2PCl bei Raumtemperatur umgesetzt. (Ein Überschuss an Me_2PCl führt zur Phosphoniumsalzbildung.) Das Benzol und das gebildete Me_2P-PMe_2 werden abkondensiert. Zurück bleiben 8.0 g (99.6% d. Th.) des reinen ClGeMe_2CH_2PMe_2.

Dimethyl-dimethylarsinomethyl-chlorgerman, ClGeMe₂CH₂AsMe₂. In einem 100 ml-Zweihalskolben mit Rührer, Tropftrichter und Rückflusskühler werden

unter Eiskühlung zu 21 g (64.3 mmol) $Me_2AsGeMe_2CH_2AsMe_2$ 11.0 g (78.3 mmol) Me_2AsCl zugetropft. Es bildet sich dabei unter starker Wärmeentwicklung das $Me_2AsAsMe_2$ und $ClGeMe_2CH_2AsMe_2$. Durch fraktionierte Destillation über eine Drehbandkolonne werden bei 85°C/10 Torr 15 g (91% d. Th.) $ClGeMe_2CH_2AsMe_2$ erhalten.

Dimethyl-dimethylaminomethyl-dimethylphosphinogerman, $Me_2PGeMe_2CH_2NMe_2$. (a) 2.1 g (10.3 mmol) $Me_2NGeMe_2CH_2NMe_2$, 3.6 g (26.8 mmol) Me_3SiPMe_2 und 10 ml Benzol werden nacheinander in eine Glasampulle einkondensiert. Die Ampulle wird unter Vakuum abgeschmolzen und 40 Stunden auf 100°C gehalten. Die kondensierbaren Anteile werden anschliessend abkondensiert. Zurück bleibt 1.0 g (43.8% d. Th.) $Me_2PGeMe_2CH_2NMe_2$.

(b) 7.7 g (39.1 mmol) ClGeMe₂CH₂NMe₂ und 6.1 g (45.0 mmol) Me₃SiPMe₂ werden in eine Glasampulle einkondensiert, die Ampulle wird unter Vakuum abgeschmolzen, vorsichtig aufgetaut und 2 Stunden auf 100°C gehalten. Das überschüssige, leicht flüchtige Me₃SiPMe₂ und das gebildete Me₃SiCl werden abkondensiert. Zurück bleiben 7.4 g (85.4% d. Th.) Me₂PGeMe₂CH₂NMe₂.

(c) 3.5 g (17.1 mmol) Me₂NGeMe₂CH₂NMe₂ werden in 50 ml Benzol in einem 100 ml-Zweihalskolben mit Rührer, Tropftrichter und Rückflusskühler unter Eiskühlung tropfenweise mit 1.8 g (29 mmol) HPMe₂ umgesetzt. Zur Vervollständigung der Reaktion wird die Lösung 10 Stunden bei Raumtemperatur gerührt. Die flüchtigen Anteile werden anschliessend abkondensiert. Zurück bleiben 3.6 g (95% d. Th.) reines Me₂PGeMe₂CH₂NMe₂.

Dimethyl-dimethylaminomethyl-dimethylarsinogerman, $Me_2AsGeMe_2CH_2NMe_2$ Geht man bei der vorstehend beschriebenen Umsetzung von 7.5 g (36.6 mmol) $Me_2NGeMe_2CH_2NMe_2$ und 4.8 g (45.3 mmol) HAsMe_2 aus, so erhält man 8.5 g (87.5% d. Th.) $Me_2AsGeMe_2CH_2NMe_2$.

Dimethyl-dimethylphosphinomethyl-dimethylaminogerman, $Me_2NGeMe_2CH_2PMe_2$. (a) Aminolyse von ClGeMe_2CH_2PMe_2 mit HNMe_2. Die Aminolyse von 4 g (18.8 mmol) ClGeMe_2CH_2PMe_2 mit 1.8 g (40 mmol) HNMe_2 in Pentan erfolgt in einer speziellen Glasapparatur, bestehend aus einem Reaktionsgefäss mit seitlich angesetzter Fritte und damit verschmolzener Ampulle, bereits bei Temperaturen unter 0°C. Das Ammoniumsalz wird von der Lösung durch Filtration über die seitlich angesetzte Fritte getrennt und mehrfach mit zurückkondensiertem Pentan gewaschen. Schliesslich wird das in der Ampulle gesammelte Filtrat eingefroren und durch Abschmelzen vom Reaktionsgefäss getrennt. Die flüchtigen Anteile werden abkondensiert und der Rückstand fraktioniert destilliert. Bei 71°C/10 Torr werden 2 g (48% d. Th.) Me_NGeMe_2CH_2PMe_2 erhalten.

(b) Umsetzung des ClGeMe₂CH₂PMe₂ mit LiNMe₂. In einem 100 ml-Zweihalskolben mit Rückflusskühler und Tropftrichter werden 6.0 g (25.1 mmol) Me₂PGeMe₂CH₂PMe₂ in ca. 20 ml n-Hexan mit der äquimolaren Menge Me₂PCl tropfenweise bei 0°C zum ClGeMe₂CH₂PMe₂ umgesetzt. Um die Phosphoniumsalzbildung zu vermeiden, wird ohne vorherige Aufarbeitung der Reaktionslösung unter Eiskühlung portionsweise eine Suspension aus 2.1 g (40 mmol) LiNMe₂ in Hexan zugegeben. Die Mischung wird 12 h bei Raumtemperature gerührt. Der LiCl-Niederschlag wird in einer Schutzgasfritte gesammelt und die Lösung über eine Drehbandkolonne unter vermindertem Druck destilliert. Dabei werden bei 71°C/ 10 Torr 4.0 g (72% d. Th.) reines Me₂NGeMe₂CH₂PMe₂ gewonnen. Dimethyl-dimethylarsinomethyl-dimethylaminogerman, $Me_2NGeMe_2CH_2AsMe_2$. (a) Aminolyse von ClGeMe_2CH_2AsMe_2 mit HNMe_2. Die Aminolyse von ClGeMe_2CH_2AsMe_2 erfolgt in der gleichen Weise wie die bereits besprochene Aminolyse des ClGeMe_2CH_2PMe_2. Bei der Umsetzung von 0.85 g (3.3 mmol) ClGeMe_2CH_2AsMe_2 mit 0.5 g (11 mmol) HNMe_2 erhält man das $Me_2NGeMe_2CH_2AsMe_2$ in geringer Ausbeute verunreinigt mit einer nicht identifizierten Verbindung.

(b) 2.1 g (40 mmol) LiNMe₂ werden in 25 ml Äther in einem 100 ml-Zweihalskolben mit Rührer, Tropftrichter und Rückflusskühler unter Eiskühlung tropfenweise mit einer ätherischen Lösung von 7 g (27.2 mmol) ClGeMe₂CH₂AsMe₂ umgesetzt. Die Suspension wird 12 Stunden bei Raumtemperatur gerührt. Man sammelt den LiCl-Niederschlag in einer Schutzgasfritte und kondensiert die flüchtigeren Anteile des Filtrats aus einem Chlorbenzolbad (-45° C) ab. Zurück bleiben 6.5 g (90% d. Th.) reines Me₂NGeMe₂CH₂AsMe₂.

Dimethyl-dimethylarsinomethyl-dimethylphosphinogerman, $Me_2PGeMe_2CH_2AsMe_2$. In eine Glasampulle mit 6 g (23.3 mmol) ClGeMe_2CH_2AsMe_2 werden 3.4 g (25 mmol) Me_3SiPMe_2 einkondensiert; die Ampulle wird unter Vakuum abgeschmolzen und 2 Stunden auf 70°C gehalten. Die kondensierbaren Anteile werden aus einem Eisbad abkondensiert. Zurück bleiben 6 g (91% d. Th.) Me_2PGeMe_2 CH_2AsMe_2.

Dimethyl-dimethylphosphinomethyl-dimethylarsinogerman, $Me_2AsGeMe_2CH_2PMe_2$. In eine Glasampulle mit 2.6 g (12.2 mmol) ClGeMe_2CH_2PMe_2 werden 3.4 g (19.1 mmol) Me_3SiAsMe_2 einkondensiert; die Ampulle wird unter Vakuum abgeschmolzen und 60 Stunden auf 100°C gehalten. Die kondensierbaren Anteile werden aus einem Eisbad abkondensiert. Zurück bleiben 2.5 g (72.5% d. Th.) Me_2AsGeMe_2CH_2PMe_2.

Dank

Der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Dr. Otto Röhm-Gedächtnisstiftung gilt unser Dank für die finanzielle Unterstützung dieser Untersuchungen; Herrn Dr. H. Harnisch, Firma Hoechst AG (Werk Knapsack) und Herrn Dr. D. Habel, Metallgesellschaft AG (Hans Heinrich-Hütte) danken wir für die kostenlose Überlassung von Chemikalien.

Literatur

- 1 J. Grobe und G.F. Scheuer, im Druck
- 2 J. Grobe und G. Heyer, J. Organometal. Chem., 61 (1973) 133.
- 3 J. Grobe und G. Heyer, Z. Anorg. Allg. Chem., 414 (1975) 247.
- 4 W. Sundermeyer und W. Verbeek, Angew. Chem., 78 (1966) 107.
- 5 J. Grobe und J. Hendricck, Syn. React. Inorg. Met. Org. Chem., 5 (1975) 393.
- 6 M. Wieber, C.-D. Frohning und G. Schwarzmann, Z. Anorg. Allg. Chem., 355 (1967) 79.
- 7 E.W. Abel, R. Honigschmidt-Grossich und S.M. Illingworth, J. Chem. Soc. A, (1968) 2623.
- 8 J.W. Anderson und J.E. Drake, J. Chem. Soc. Dalton, (1972) 951.
- 9 H. Brooks, F. Glocking und K.A. Hooton, J. Chem. Soc., (1965) 4283.
- 10 H. Schumann, A. Roth und O. Stelzer, Angew. Chem., 80 (1968) 240.
- 11 E.W. Abel und S.M. Illingworth, J. Chem. Soc. A (1969) 1094.
- 12 J.E. Drake, N. Goddard und J. Simpson, Inorg. Nucl. Chem. Lett., 4 (1968) 361.
- 13 S. Cradock, E.A.V. Ebsworth, G. Davidson und L.A. Woodward, J. Chem. Soc. A, (1967) 1229.
- 14 E.A.V. Ebsworth, D.W.H. Rankin und G.M. Sheldrick, J. Chem. Soc. A, (1968) 2828.

15 I. Schumann und H. Blass, Z. Naturforsch. B., 21 (1966) 1105.

- 16 K. Issleib und A. Tzschach, Chem. Ber., 92 (1959) 704.
- 17 H. Niebergall und B. Langenfeld, Chem. Ber., 95 (1962) 75.
- 18 G.W. Parshall, Inorg. Syn., 11 (1968) 157.
- 19 R.D. Feltham und W. Silverthorn, Inorg. Syn., 10 (1967) 159.

20 J. Grobe, J.E. Helgerund und H. Stierand, Z. Anorg. Allg. Chem., 371 (1969) 123.